Calculus Volume 1 1.1 Review of Functions -part 1

Calculus Volume 1

1.1 Review of Functions -part 1

Learning Objectives :

1.1.1 Use functional notation to evaluate a function.

1.1.2 Determine the domain and range of a function.

1.1.3 Draw the graph of a function.

1.1.4 Find the zeros of a function.

1.1.5 Recognize a function from a table of values.

1.1.6 Make new functions from two or more given functions.

1.1.7 Describe the symmetry properties of a function.

In this section, we provide a formal definition of a function and examine several ways in which functions are represented—namely, through tables, formulas, and graphs. We study formal notation and terms related to functions. We also define composition of functions and symmetry properties. Most of this material will be a review for you, but it serves as a handy reference to remind you of some of the algebraic techniques useful for working with functions.

  • more given functions.
  • 1.1.7 Describe the symmetry properties of a function.

In this section, we provide a formal definition of a function and examine several ways in which functions are represented—namely, through tables, formulas, and graphs. We study formal notation and terms related to functions. We also define composition of functions and symmetry properties. Most of this material will be a review for you, but it serves as a handy reference to remind you of some of the algebraic techniques useful for working with functions.

Functions

Given two sets A and B, a set with elements that are ordered pairs (x,y), where x is an element of A and y is an element of B, is a relation from A to B. A relation from A to B defines a relationship between those two sets. A function is a special type of relation in which each element of the first set is related to exactly one element of the second set. The element of the first set is called the input; the element of the second set is called the output. Functions are used all the time in mathematics to describe relationships between two sets. For any function, when we know the input, the output is determined, so we say that the output is a function of the input. For example, the area of a square is determined by its side length, so we say that the area (the output) is a function of its side length (the input). The velocity of a ball thrown in the air can be described as a function of the amount of time the ball is in the air. The cost of mailing a package is a function of the weight of the package. Since functions have so many uses, it is important to have precise definitions and terminology to study them.

DEFINITION

function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The set of inputs is called the domain of the function. The set of outputs is called the range of the function.

For example, consider the function f, where the domain is the set of all real numbers and the rule is to square the input. Then, the input x=3 is assigned to the output 32=9. Since every nonnegative real number has a real-value square root, every nonnegative number is an element of the range of this function. Since there is no real number with a square that is negative, the negative real numbers are not elements of the range. We conclude that the range is the set of nonnegative real numbers.

For a general function f with domain D, we often use x to denote the input and y to denote the output associated with x. When doing so, we refer to x as the independent variable and y as the dependent variable, because it depends on x. Using function notation, we write y=f(x), and we read this equation as y equals f of x. For the squaring function described earlier, we write f(x)=x2.

The concept of a function can be visualized using Figure 1.2Figure 1.3, and Figure 1.4.

An image with three items. The first item is text that reads “Input, x”. An arrow points from the first item to the second item, which is a box with the label “function”. An arrow points from the second item to the third item, which is text that reads “Output, f(x)”.
Figure 1.2 A function can be visualized as an input/output device.
An image with two items. The first item is a bubble labeled domain. Within the bubble are the numbers 1, 2, 3, and 4. An arrow with the label “f” points from the first item to the second item, which is a bubble labeled “range”. Within this bubble are the numbers 2, 4, and 6. An arrow points from the 1 in the domain bubble to the 6 in the range bubble. An arrow points from the 1 in the domain bubble to the 6 in the range bubble. An arrow points from the 2 in the domain bubble to the 4 in the range bubble. An arrow points from the 3 in the domain bubble to the 2 in the range bubble. An arrow points from the 4 in the domain bubble to the 2 in the range bubble.
Figure 1.3 A function maps every element in the domain to exactly one element in the range. Although each input can be sent to only one output, two different inputs can be sent to the same output.
An image of a graph. The y axis runs from 0 to 3 and has the label “dependent variable, y = f(x)”. The x axis runs from 0 to 5 and has the label “independent variable, x”. There are three points on the graph. The first point is at (1, 2) and has the label “(1, f(1)) = (1, 2)”. The second point is at (2, 1) and has the label “(2, f(2))=(2,1)”. The third point is at (3, 2) and has the label “(3, f(3)) = (3,2)”. There is text along the y axis that reads “range = {1, 2}” and text along the x axis that reads “domain = {1,2,3}”.
Figure 1.4 In this case, a graph of a function f has a domain of {1,2,3} and a range of {1,2}. The independent variable is x and the dependent variable is y


Comments

Popular posts from this blog

Calculus Volume 1 1.1 Review of Functions : part 2